Какой газ называется идеальным. Введение

Модель идеального газа – Учебник по молекулярной физике

Какой газ называется идеальным. Введение

Идеальный газ – это модель разреженного газа, в которой пренебрегается взаимодействием между молекулами. Силы взаимодействия между молекулами довольно сложны. На очень малых расстояниях, когда молекулы вплотную подлетают друг к другу, между ними действуют большие по величине силы отталкивания.

На больших или промежуточных расстояниях между молекулами действуют сравнительно слабые силы притяжения. Если расстояния между молекулами в среднем велики, что наблюдается в достаточно разреженном газе, то взаимодействие проявляется в виде относительно редких соударений молекул друг с другом, когда они подлетают вплотную.

В идеальном газе взаимодействием молекул вообще пренебрегают.

Теория создана немецким физиком Р. Клаузисом в 1957 году для модели реального газа, которая называется идеальный газ. Основные признаки модели:

  • ·        расстояниямежду молекулами велики по сравнению с их размерами;
  • ·        взаимодействиемежду молекулами на расстоянии отсутствует;
  • ·        пристолкновениях молекул действуют большие силы отталкивания;
  • ·        времястолкновения много меньше времени свободного движения между столкновениями;
  • ·        движенияподчиняются законом Ньютона;
  • ·        молекулы -упругие шары;
  • ·        силывзаимодействия возникают при столкновении.

Границы применимости модели идеального газа зависят от рассматриваемой задачи.

Если необходимо установить связь между давлением, объемом и температурой, то газ с хорошей точностью можно считать идеальным до давлений в несколько десятков атмосфер.

Если изучается фазовый переход типа испарения или конденсации или рассматривается процесс установления равновесия в газе, то модель идеального газа нельзя применять даже при давлениях в несколько миллиметров ртутного столба.

Давление газа на стенку сосуда является следствием хаотических ударов молекул о стенку, вследствие их большой частоты действие этих ударов воспринимается нашими органами чувств или приборами как непрерывная сила, действующая на стенку сосуда и создающая давление.

Пусть одна молекула находится в сосуде, имеющем форму прямоугольного параллелепипеда (рис. 1). Рассмотрим, например, удары этой молекулы о правую стенку сосуда, перпендикулярную оси Х.

Считаем удары молекулы о стенки абсолютно упругими, тогда угол отражения молекулы от стенки равен углу падения, а величина скорости в результате удара не изменяется. В нашем случае при ударе проекция скорости молекулы на ось У не изменяется, а проекция скорости на ось Х меняет знак.

Таким образом, проекция импульса изменяется при ударе на величину, равную , знак «-» означает, что проекция конечной скорости отрицательна, а проекция начальной – положительна.

Определим число ударов молекулы о данную стенку за 1 секунду. Величина проекции скорости не изменяется при ударе о любую стенку, т.е. можно сказать, что движение молекулы вдоль оси Х равномерное. За 1 секунду она пролетает расстояние, равное проекции скорости .

От удара до следующего удара об эту же стенку молекула пролетает вдоль оси Х расстояние, равное удвоенной длине сосуда 2L. Поэтому число ударов молекулы о выбранную стенку равно . Согласно 2-му закону Ньютона средняя сила равна изменению импульса тела за единицу времени.

Если при каждом ударе о стенку частица изменяет импульс на величину , а число ударов за единицу времени равно , то средняя сила, действующая со стороны стенки на молекулу (равная по величине силе, действующей на стенку со стороны молекулы), равна , а среднее давление молекулы на стенку равно , где V – объем сосуда.

Если бы все молекулы имели одинаковую скорость, то общее давление получалось бы просто умножением этой величины на число частиц N, т.е. . Но поскольку молекулы газа имеют разные скорости, то в этой формуле будет стоять среднее значение квадрата скорости, тогда формула примет вид: .

Квадрат модуля скорости равен сумме квадратов ее проекций, это имеет место и для их средних значений: . Вследствие хаотичности теплового движения средние значения всех квадратов проекций скорости одинаковы, т.к.

нет преимущественного движения молекул в каком-либо направлении. Поэтому , и тогда формула для давления газа примет вид: .

Если ввести кинетическую энергию молекулы , то получим , где  – средняя кинетическая энергия молекулы.

Согласно Больцману средняя кинетическая энергия молекулы пропорциональна абсолютной температуре , и тогда давление идеального газа равно  или

.                                                                                                  (1)

Если ввести концентрацию частиц , то формула перепишется так:

.                                                                                                      (2)

Число частиц можно представить в виде произведения числа молей на число частиц в моле, равное числу Авогадро , а произведение . Тогда (1) запишется в виде:

.                                                                                                  (3)

Уравнения (1), (2) и (3) – это разные формы записи уравнения состояния идеального газа, они связывают давление, объем и температуру газа.

Эти уравнения применимы как к чистым газам, так и к смесям газов, в последнем случае под N, n и ν следует понимать полное число молекул всех сортов, суммарную концентрацию или полное число молей в смеси.

Для чистого газа число молей , где М – масса газа, а μ – масса одного моля (молярная масса). Тогда уравнение (3) примет вид:

.                                                                                               (4)

Уравнение состояния в этой форме называют уравнением Клапейрона–Менделеева.

Рассмотрим частные газовые законы. При постоянной температуре и массе из (4) следует, что , т.е. при постоянной температуре и массе газа его давление обратно пропорционально объему. Этот закон называется законом Бойля и Мариотта, а процесс, при котором температура постоянна, называется изотермическим.

Для изобарного процесса, происходящего при постоянном давлении, из (4) следует, что , т.е. объем пропорционален абсолютной температуре. Этот закон называют законом Гей-Люссака.

Для изохорного процесса, происходящего при постоянном объеме, из (4) следует, что , т.е. давление пропорционально абсолютной температуре. Этот закон называют законом Шарля.

Эти три газовых закона, таким образом, являются частными случаями уравнения состояния идеального газа. Исторически они сначала были открыты экспериментально, и лишь значительно позднее получены теоретически, исходя из молекулярных представлений.

Источник: https://www.sites.google.com/site/ucebnikpomolekularnojfizike/idealnyj-gaz/model-idealnogo-gaza

Реферат: Идеальный газ 2

Какой газ называется идеальным. Введение

Оглавление

Введение. 2

Уравнение состояния идеального газа. 3

Закон Бойля-Мариотта. Изотерма. 3

Закон Гей-Люссака. Изобара. 3

Закон Шарля. Изохора. 3

Заключение. 3

Список источников. 3

Введение

Идеальный газ — математическая модельгаза, в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией.

Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Модель широко применяется для решения задач термодинамики газов и задач аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур или давлений требуется применение более точной модели, например модели газа Ван-дер-Ваальса, в котором учитывается притяжение между молекулами.

Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми — Дирака или Бозе — Эйнштейна).

Газовые законы – законы термодинамических процессов, протекающих в системе с неизменным количеством вещества при постоянном значении одного из параметров: закон Шарля, закон Гей-Люссака, закон Бойля-Мариотта, а также закон Авогадро, закон Дальтона.

Уравнение состояния идеального газа

Уравнение состояния идеального газа (уравнение Менделеева – Клапейрона ) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

где

· p — давление,

· — молярный объём,

· T — абсолютная температура,

· R — универсальная газовая постоянная.

Так как , где где ν — количество вещества, а , где m — масса, μ — молярная масса, уравнение состояния можно записать:

та форма записи носит имя уравнения (закона) Менделеева — Клапейрона .

Уравнение можно записать в виде:

Последнее уравнение называют объединённым газовым законом . Из него получаются законы Бойля — Мариотта, Шарля и Гей-Люссака:

— закон Бойля — Мариотта.

— закон Гей-Люссака.

— закон Шарля

Закон Бойля-Мариотта. Изотерма

ЗАКОН БОЙЛЯ — МАРИОТТА, один из основных газовых законов, который описывает изотермические процессы в идеальных газах. Его установили учёные Р. Бойль в 1662 г. и Э. Мариотт в 1676 г. независимо друг от друга при экспериментальном изучении зависимости давления газа от его объема при постоянной температуре.

Согласно закону Бойля-Мариотта при постоянной температуре Т объем V данной массы m идеального газа обратно пропорционален его давлению р , т. е.:

pV = const = С приT=const иm=const

Постоянная С пропорциональна массе газа (числу молей) и его абсолютной температуре. Другими словами: произведение объема данной массы идеального газа на его давление постоянно при постоянной температуре.

Закон Бойля — Мариотта выполняется строго для идеального газа. Для реальных газов закон Бойля — Мариотта выполняется приближенно.

Практически все газы ведут себя как идеальные при не слишком высоких давлениях и не слишком низких

температурах.

Закон Бойля — Мариотта следует из кинетической теории газов, когда принимается допущение, что размеры молекул пренебрежимо малы по сравнению с расстоянием между ними и отсутствует межмолекулярное взаимодействие. При больших давлениях необходимо вводить поправки на силы притяжения между молекулами и на объем самих молекул.

Как и уравнение Клайперона, закон Бойля — Мариотта описывает предельный случай поведения реального газа, более точно описываемый уравнением Ван-дер-Ваальса. Применение закона приближенно можно наблюдать в процессе сжатия воздуха компрессором или в результате расширения газа под поршнем насоса при откачке его из сосуда.

Термодинамический процесс, котроый происходит при постоянной температуре называется изотермическим. Изображение его на графике называется изотермой.(см. график изотермического процесса)

Закон Гей-Люссака. Изобара

Французский ученый Ж. Гей-Люссак в 1802 году нашел экспериментально зависимость объема газа от температуры при постоянном давлении. Данные лежат в основе газового закона Гей-Люссака.

Формулировка закона Гей-Люссака следующая: для данной массы газа отношение объема газа к его температуре постоянно, если давление газа не меняется. Эту зависимость математически записывают так:

V/Т=const, если P=const и m=const

Применение:

Данный закон приближенно можно наблюдать, когда происходит расширение газа при его нагревании в цилиндре с подвижным поршнем.

Постоянство давления в цилиндре обеспечивается атмосферным давлением на внешнюю поверхность поршня. Другим проявлением закона Гей-Люссака в действии является аэростат.

Закон Гей-Люссака не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.

Закон справедлив для идеального газа. Он неплохо выполняется для разреженных газов, которые по своим свойствам близки к

идеальному. Температура газа должна быть достаточно велика.

Графически эта зависимость в координатах V-T изображается в виде прямой, выходящей из точки Т=0 . Эту прямую называют изобарой . Разным давлениям соответствуют разные изобары. Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным . От греческого слова «барос» – вес (тяжесть). (см. график изобарного процесса).

Закон Шарля. Изохора

Французский ученый Ж. Шарль в 1787 году нашел экспериментально зависимость давления газа от температуры при постоянном объеме. Данные лежат в основе газового закона Шарля.

Формулировка закона Шарля следующая: для данной массы газа отношение давления газа к его температуре постоянно, если объем газа не меняется. Эту зависимость математически записывают так:

P /Т= const , если V = const и m = const

Применение:

Данный закон приближенно можно наблюдать, когда происходит увеличение давления газа в любой емкости или в электрической лампочке при нагревании. Изохорный процесс используется в газовых термометрах постоянного объема. Закон Шарля не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.

Закон справедлив для идеального газа. Он неплохо выполняется для разреженных газов, которые по своим свойствам близки к идеальному. Температура газа должна быть достаточно высокой. Процесс должен проходить очень медленно

Графически эта зависимость в координатах P-T изображается в виде прямой, выходящей из точки Т=0 . Эту прямую называют изохорой . Разным объемам соответствуют разные изохоры. Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным . От греческого слова «хорема»-вместимость. (см. графики изохорного процесса

Заключение

Газовые законы – законы термодинамических процессов, протекающих в системе с неизменным количеством вещества при постоянном значении одного из параметров: закон Шарля, закон Гей-Люссака, закон Бойля-Мариотта, а также закон Авогадро, закон Дальтона.

Список источников

1. Вукалович М.П., Новиков И.И. – Термодинамика. М: Машиностроение, 1972

2. Грабовский Р.И. Курс физики. М: Высшая школа, 1974

3. Громов С. В., Физика: Оптика. Тепловые явления. Строение и свойства вещества: Учебник для 10 класса., Москва, «Просвещение», 2003 г.

4. Коротков П.Ф. Молекулярная физика и термодинамика – 2e изд., MФТИ, 2004

5. Мякишев Г. Я., Буховцев Б. Б., Сотский Н. Н., Физика, учебник для 10 класса общеобразовательных учреждений, Москва, «Просвещение», 2008г.

6. Якунин В. И., Учебное пособие для изучающих физику в средней школе., Тамбов, ТИПКРО, Тамбовский областной физико-математический лицей, 1994

Источник: https://www.bestreferat.ru/referat-234077.html

Понятие реального газа

Какой газ называется идеальным. Введение

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Понятие реального газа

2. Внутренняя энергия реального газа

3. Уравнение Ван-дер-Ваальса

4. Изотермы Ван-дер-Ваальса

5. Фазовые переходы первого и второго рода

6. Третье начало термодинамики (теорема Нернста)

Заключение

Список литературы

fВведение

Газы (французское gaz; название предложено голландским учёным Я.Б. Гельмонтом), агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь предоставленный им объём. Вещество в газообразном состоянии широко распространено в природе.

Газы образуют атмосферу Земли, в значительных количествах содержатся в твёрдых земных породах, растворены в воде океанов, морей и рек. Солнце, звёзды, облака межзвёздного вещества состоят из газов – нейтральных или ионизованных (плазмы).

Встречающиеся в природных условиях газы представляют собой, как правило, смеси химически индивидуальных газов. Газы обладают рядом характерных свойств. Они полностью заполняют сосуд, в котором находятся, и принимают его форму. В отличие от твёрдых тел и жидкостей, объём газа существенно зависит от давления и температуры.

Коэффициент объёмного расширения газа в обычных условиях (0-100°С) на два порядка выше, чем у жидкостей, и составляет в среднем 0,003663 град-1.

f1.Понятие реального газа

Реальный газ-это модель идеального газа, используемая в молекулярно-кинетической теории газов, позволяющая описывать поведение разрежённых реальных газов при достаточно высоких температурах и низких давлениях.

При выводе уравнения состояния идеального газа размерами молекул и их взаимодействием друг с другом пренебрегают. Повышение давления приводит к уменьшению среднего расстояния между молекулами, поэтому необходимо учитывать объём молекул и взаимодействие между ними.

При высоких давлениях и низких температурах указанная модель идеального газа непригодна.

При рассмотрении реальных газов – газов, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они проявляются на расстояниях ?10-9 м. и быстро убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими.

В ХХ в., по мере развития и представлений о строении атома и квантовой механики, было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. Силы отталкивания считаются положительными, а силы взаимного притяжения – отрицательными.

2. Внутренняя энергия реального газа

Внутренняя энергия реального газа складывается из кинетической энергии теплового движения его молекул и из потенциальной энергии межмолекулярного взаимодействия. Потенциальная энергия реального газа обусловлена только силами притяжения между молекулами. Наличие сил притяжения приводит к возникновению внутреннего давления на газ.

fрґ=а/V2

Работа, которая затрачивается для преодоления сил притяжения, действующих между молекулами газа, или, иными словами, против внутреннего давления, как известно из механики, идёт на увеличение потенциальной энергии системы.

dA=pґVm=dП,

dП=a/V2m*dVm,

П=-а/Vm.

Знак минус означает, что молекулярные силы, создающие внутреннее давление рґ, являются силами притяжения. Учитывая оба слагаемых, получим, что внутренняя энергия моля реального газа растёт с повышением температуры и увеличением объёма.

Um=CVT-a/Vm

Если газ расширяется без теплообмена с окружающей средой и не совершает внешней работы, то на основании первого начала термодинамики получим, что U1=U2. Следовательно, при адиабатическом расширении без совершения внешней работы внутренняя энергия газа не изменяется.

3. Уравнение Ван-дер-Ваальса

Учёт собственного объёма молекул и сил межмолекулярного взаимодействия привёл голландского физика И. Ван-дер-Ваальса (1837-1923) к выводу уравнения состояния реального газа. Ван-дер-Ваальсом в уравнение Клапейрона-Менделеева введены две поправки.

1.Учёт собственного объёма молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объём других молекул, сводится к тому, что фактический свободный объём, в котором могут двигаться молекулы реального газа, будет не Vm, а Vm-b, где b- объём, занимаемый самими молекулами.

Объём b равен утверждённому собственному объёму молекул.

Если, например, в сосуде находятся две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние меньше d, это означает, что для центров обеих молекул оказывается недоступным объём сферы радиусом d, объём, равный восьми объёмам молекулы, а в расчёте на одну молекулу – учетверённый объём молекулы.

2.Учёт притяжения молекул. Действие сил притяжения между молекулами реального газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно квадрату объёма газа, т.е.

pґ=a/V2

где а – постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного притяжения, Vm – молярный объём. Вводя эти поправки – получим уравнение Ван-дер-Ваальса для моля газа (уравнение состояния идеальных газов):

(p+a/V2m) (Vm-b)=RT

При выводе уравнения Ван-дер-Ваальса сделан целый ряд упрощений, поэтому оно также весьма приближённое, хотя и лучше согласуется с опытом, чем уравнение состояния идеального газа. При малых давлениях и высоких температурах объём Vm становится большим, поэтому b”Vm, и уравнение Ван-дер-Ваальса в данном случае совпадает с уравнением Клапейрона-Менделеева.4. Изотермы Ван-дер-Ваальса

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ваальса – кривые зависимости p от Vm при заданных Т, – определяемые уравнением Ван-дер-Ваальса для моля газа.

Эти кривые, полученные для четырёх различных температур, имеют довольно своеобразный характер: при высоких температурах (Т>Тк) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением её формы, оставаясь монотонно спадающей кривой; при некоторой температуре, на изотерме имеется лишь одна точка перегиба; при низких температурах (ТТк) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением её формы, оставаясь монотонно спадающей кривой; при некоторой температуре, на изотерме имеется лишь одна точка перегиба; при низких температурах (Т

Источник: https://otherreferats.allbest.ru/physics/00343950_0.html

Введение

Какой газ называется идеальным. Введение

В первой частииздания представлены шесть лекций,посвященных раскрытию физическогосмысла основных законов и понятиймеханики.

Вторая частьпродолжает курс лекций по физике исодержит девять лекций по молекулярнойфизике и термодинамике.

Предметом изучениямолекулярной физики является движениебольших совокупностей молекул. Приизучении используются статистиче­скийи термодинамический методы.

Молекулярнаяфизика исходит из представлений омолекулярном строении вещества. Посколькучисло частиц в макросистеме велико,зако­номерности внейимеют статистический, т.е. вероятностный,характер.

На основе определенных моделеймолекулярная физика позволяет объяс­нитьнаблюдаемые свойства макросистем(систем, состоящих из очень большогочисла частиц) как суммарный эффектдействий отдельных мо­лекул.

При этомиспользуется статистический метод, вкотором нас инте­ресуют не действияотдельных молекул, а средние значенияопределенных величин.

В термодинамикеиспользуют понятия и физические величины,от­носящиеся к системе в целом,например, объем, давление и температура.Термодинамика основана на общихпринципах, или началах, которыепредставляют собой обобщение опытныхфактов.

Термодинамическийи статистический методы изучениямакросис­тем дополняют друг друга.Термодинамический метод позволяетизучать явления без знания их внутреннихмеханизмов. Статистический методпо­зволяет понять суть явлений,установить связь поведения системы вцелом с поведением и свойствами отдельныхчастиц.

Цельавтора, как и в первой части представленногоиздания, сде­латьдля начинающего студента фактическидоступными основные поня­тия изакономерности молекулярной физики,порой весьма непростые.

Студенту нужноне «зазубривать» материал, а постаратьсяпонять, раз­мышлять, проверить себяпо вопросам для самоконтроля послекаждой лекции, а также прорешатьсоответствующие задачи, например изпособия [9].

Максимальное внимание должнобыть уделено физическому смыслуизучаемого материала.

ВНИМАНИЕ! ПРЕДЛАГАЕМОЕИЗДАНИЕ ОБЛЕГЧАЕТ РАБОТУ СТУДЕНТА, НОНЕ ЗАМЕНЯЕТ САМИ ЛЕКЦИИ В АУДИТОРИИ!

Молекулярно-кинетическая теория (мкт) идеального газа

План

  1. Понятие идеального газа. Молекулярно-кинетическое толкование температуры. Макроскопические параметры системы.

  2. Число степеней свободы. Закон равнораспределение энергии. Внутренняя энергия идеального газа.

  3. Давление газа с точки зрения молекулярно-кинетической теории идеального газа (основное уравнение молекулярно-кинетической теории).

  4. Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева).

1. Понятие идеального газа

Идеальнымназывается газ, взаимодействие, междумолекулами которого пренебрежимо малои состояние которого описываетсяуравнением Клапейрона-Менделеева.

Модельидеального газа.

1.Собственныйобъём молекулгаза пренебрежимо малпо сравнению с объёмом сосуда.

2.Между молекулами газа отсутствуетсилы взаимодействия.

3.Столкновениямолекул газа между собой и со стенкамисосуда абсолютноупругие.

Взаимодействиемежду молекулами всякого газа становитсяпренебрежимо слабым при малых плотностяхгаза, прибольшом разрежении. Такие газы каквоздух, азот, кислород, даже при обычныхусловиях, т.е. при комнатной температуреи атмосферном давлении мало отличаютсяот идеального газа. Особенно близки кидеальному газу гелий и водород.

Неследует думать, что взаимодействиемежду молекулами идеального газа вовсеотсутствует.Напротив, его молекулы сталкиваютсядруг с другом и эти столкновениясущественныдля установления определённых тепловыхсвойств газа.Но столкновения проходят настолькоредко, чтобольшую частьвремени молекулы движутся как свободныечастицы.

Именностолкновения между молекулами позволяютввести такой параметр как температура.Температурателахарактеризует энергию, с которой движутсяего молекулы. Для идеального газа вравновесных условиях абсолютнаятемпература пропорциональна среднейэнергии поступательного движениямолекул.

Определение.Макроскопическойназывается система, образованнаяогромным числом частиц (молекул, атомов).Параметры,характеризующие поведение системы(например, газа), как целого, называетсямакропараметрами.Например, давление Р,объём V и температура Тгаза – макропараметры.

Параметры,характеризующие поведение отдельныхмолекул(скорость, масса и т.п.) называетсямикропараметрами.

Источник: https://studfile.net/preview/5773259/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.